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Abstract 

An integrated online modeling environment is currently un- 
der development for use by AGS and RHIC physicists and 
commissioners. This environment combines the modeling 
efforts of both groups in a CDEV[ l] client-server design, 
providing access to expected machine optics and physics 
parameters based on live and design machine settings. An 
abstract modeling interface has been designed as a set of 
adapters[2] around core computational modeling engines 
such as MAD and UAL/Teapot++[3]. This approach al- 
lows us to leverage existing survey, lattice, and magnet in- 
frastructure, as well as easily incorporate new model engine 
developments. This paper describes the architecture of the 
RHIC/AGS modeling environment, including the applica- 
tion interface through CDEV and general tools for graph- 
ical interaction with the model using Tcl/Tk. Separate pa- 

pers at this conference address the specifics of implement- 
ation and modeling experience for AGS and RHIC. 

1 MOTIVATION AND SCOPE 

Over the past five years, an infrastructure has been de- 

veloped in the RHIC project that integrates delivered 
magnet measurements, offline long-term particle tracking, 
and survey of installed RHIC components. Both design 
and ‘as built’ optics models of RHIC are routinely pro- 
duced. Accelerator applications being developed for com- 
missioning require a consistent optics model framework 
that builds upon this effort, maintaining consistency from 
design through construction and installation to commis- 
sioning. However, the tracking and optics programs used 
for design and magnet production feedback could not be 
easily adapted for use by RHIC controls applications. 

We have developed an online modeling environment 
used by various RHIC correction applications (e.g. orbit, 
tune, chromaticity, coupling) to access design, as-built, and 
live optics data generated by optics model engines. By us- 
ing a client-server model and an abstracted modeling inter- 
face layer, this becomes a generic modeling environment 
that can also be used for AGS and AGS/Booster applic- 
ation modeling and calculation. Multiple model engines 
with different interfaces and implementations are suppor- 
ted by a common CDEV interface for application use. 

The online model design discussed here is not inten- 
ded to supply a full control-system simulation of an op- 
erational accelerator control system (cf. Fermilab’s Open 
Access Server). At this time there are no plans to imple- 
ment such a simulation service for RHIC. 
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1. Read/write flat machine lattice descriptions 
2. Read/set individual magnet parameters: 

l Strength (including combined function magnets) 
l Offset from design (2D) 
l Multipole corrections and errors 
l Survey and layout 

3. Read/Set boundary conditions 

l Single-particle initial coords, energy, species 
l Bunch initial conditions (groups of particles) 
l Beamline initial lattice functions 

4. Calculate optics to reasonable order: 

l Tunes (Q,, Qg, Qs> 
0 Transition energy, 7~ 
l Lattice functions (/?, Q, phases, 71,. . .) 
l 6D orbit, football transfer matrices 
l First-turn and closed orbits 

. . . Future development, specialty CMEs 

l Perform constrained model-based corrections 
l Produce Taylor Expansions, maps, DA forms 
l Perform single-particle and bunch tracking 

Table 1: A summary of CME computational capabilities in 
the RHIC/AGS Online Model Environment. 

2 COMPUTATIONAL MODEL ENGINES 

A computational modeling engine (CME) is an acceler- 
ator simulation that provides an interactive interface (usu- 
ally an interpreted script) to a small set of modeling cap- 
abilities. These CMEs are the core of any accelerator 
modeling, online or offline - they are the algorithmic 
guts and interfaces that transform lattice and beam defin- 
itions into beam physics output. UAL/Teapot++is the 
CME currently in use for RHIC design and commissioning. 

Other commonly-used CMEs include Teapot, TRANS- 
PORT, SYNCH, COSY, and MAD, and several locally- 
modified versions of MAD are also used and maintained 

by AGS beam physicists [4]. 
Online modeling requires interactive, real-time CMEs. 

Most popular CMEs are used by accelerator designers 
and modelers in a batch job mode, driven by command 
scripts written in highly idiomatic command languages, 

and parsed and interpreted line by line. Though the script 
interface can also be used interactively, optics output is 
usually only output to files, an inefficient path for applica- 
tion interaction with a CME. The online modeling architec- 
ture described here abstracts the common features of many 
CMEs into a simple network command interface that can 



be used by accelerator applications on distributed controls 
consoles. 

CMEs load accelerator lattice definitions using another 
idiomatic language, though there is much more common- 
ality here as many accelerator codes use the the MAD in- 
put language, Standard Machine Format (SMF). However, 
SMF is cumbersome or deficient in some areas required 

to model a fully hierarchical design model of an acceler- 
ator, modified by ‘as-built’ constraints. Recent collabor- 
ative efforts between several labs have made progress to- 
wards developing SXF, a Standard Exchange Format, to su- 
persede SMF for collaborative LHC design work [5]. The 
RHIC/AGS modeling environment provides an abstract in- 
terface to lattice and strength table read/write, allowing 
adaptors to be easily written that integrate local lattice 
databases and definitions with various CMEs in the online 
model. 

Functional requirements for CMEs are derived from ap- 
plication and commissioning priorities, as well as com- 
monality of existing CME functionalities. Experience has 

shown that the most common requests to an online CME 
during commissioning are those shown in Table 1. In par- 
ticular, one must be able to change magnet strengths and 
offsets, and calculate full 6D linear optics parameters for 
use in control application analysis and correction. Many 
CMEs are capable of these calculations with very similar 
interfaces, though they vary wildly in their implementa- 
tions and compromises between speed and completeness. 

3 SERVER ARCHITECTURE 

The client-server architecture for RHIC/AGS online mod- 
eling is shown in Figure 1. Client applications interact 
with the model via CDEV calls, as described in Section 4. 
Each model server for a supported CME is compiled from 
several C++classes. The CDEV modeling interface is 
provided by a CDEV Model Server class that is derived 
from the CDEV Generic Server[6]; derived servers may ex- 
tend the interface to provide extended access to underlying 

CME capabilities and data structures. 

3.1 Generic model data classes 

The model server uses a small set of generic model data 
classes to provide the data interface between optics and 
magnet settings in the CME and the model server class. 
This supports the CME capabilities in Table 1, and in- 
cludes arrays of lattice functions at user-specified mon- 
itor elements, as well as matrices for higher-order optics. 
All model data follows Teapot unit and coordinate conven- 
tions, for initial implementation convenience. However, 
the current strongly-typed model data class is not dynamic- 
ally extensible to accommodate different CME data struc- 
tures, and this data class will be reimplemented as a generic 
cdevData container extension in the near future. 
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Figure 1: The RHIC/AGS online model architecture. Each 
running model server is a separate unix process, binding 
the server interface to an instance of a CME. 

3.2 CME Adapters 

Each CME must have an adapter class that translates gen- 
eric method calls from the server to CME-specific function 
calls or implementations. Writing such an adapter is the 
major effort required to integrate a new CME into this en- 

vironment. All CME adapters are derived from a parent 
interface class; this general interface is then used by the 
model server when making requests, and the model data 
classes are used to retrieve optics and lattice output. 

CME translation and interface becomes complicated 
when the CME only has a parsed scripting interface that 
is not easily bindable (e.g. AGS/MAD, or MAD with no 
source libraries). In these cases the CME adapter must fork 
a separate process instance of the CME and interact with 
it via file descriptors, generating command text and pars- 
ing output files as requests are made. Other CMEs (such 
as UALfleapot++) that have direct C++object interfaces 

may be used directly in the CME via shared libraries that 
are loaded at run-time. 

3.3 Lattice adapters 

Lattice adapters provide translations from one lattice rep- 
resentation to another within a given environment, such as 
a control system or accelerator design project. They separ- 
ately implement read/write of accelerator lattices and sur- 
vey (slowly-changing or static layout), and magnet strength 
(dynamic control) information. In particular, they can also 
implement methods to load live accelerator magnet settings 
from the control system into the model, allowing interact- 
ive online comparisons between live and expected machine 
optics. 



1. Names and Strengths: 

l SiteWideNames 
l ModelStrength: in physics units 

2. Model Output: 

l LatticeFunctions 

l Orbit 
0 muX, muY tunes for circular lattices 

0 chromX, chromY chromaticities 
0 gammatransition 

3. Response Matrices: 

SteeringMatrix: for beamline steering 
ClosedOrbitMatrix: for closed orbit correction 
OscillationMatrix: for coherent oscillation cor- 
rection 
MatchingMatrix: for betatron matching 
TuneMatrix: for tune correction 
GammaTransitionMatrix: for ^(t correction 

Table 2: Model keywords for requests to the CME server 

4 CDEV CLIENT INTERFACE 

The client side of the CME server consists of several CDEV 
‘device’ classes, and specific attributes for each class. The 
attributes for a model device are summarized in Table 2. 
The message interface allows access to the model by using 
‘get’ and ‘set’ verbs, or notification on-change by using the 
‘monitorOn’ verb, where callbacks will be triggered when 
the underlying data changes. This notification allows mul- 

tiple clients to stay synchronized when magnet parameters 
or injection parameters are changed within the model. 

For retrieving response matrices we have followed the 
naming conventions used in the ‘BeamOptics’ code [7]; 
in Table 2 we list the requests for several types of these 
matrices. Each request takes appropriate lists of magnet 
names and position pickups, which are then sent as tagged 
entries in cdevData interface to the model. Optionally, the 
outgoing context data specifies an interest in a subset of the 
default return data; for instance, this allows a lattice func- 
tion call to only return pZ and Q, instead of the full set. 

5 APPLICATION EXAMPLES 

Currently several applications at RHIC use the interface 
described here to access the UAWTeapot++CME. They 
include the RHIC orbit correction application, the RHIC 
injection application[8], the ATR emittance measurement 
application, the RHIC Ramp Editor[9], and several Tcl/Tk 
scripts that are used for lattice function visualization, and 
what-if scenarios. As an example we show in fig. 2 the 

interface to the RHIC injection application, displaying a 
CME-derived orbit. 

Figure 2: The RHIC injection application, 
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